

ADAPTIVE VERTICAL FARM FOR FRESH FOOD PRODUCTION IN LIFE SUPPORT SYSTEMS

Patrizia Bagnerini¹, Mauro Gaggero², Marco Ghio³, Franco Malerba³

¹University of Genoa & Space V S.r.l.

²National Research Council of Italy, Genoa

³Space V S.r.l., Genoa

FOOD IN SPACE

To increase level of autonomy from Earth

- Low dietary variety.
- No fresh vitamins.
- Incompatible for space tourism.
- Impacts the health/psyche of astronauts.

MAIN GOAL

To produce fresh food

- For longer space missions.
- For **space-tourists'** quality of comfort.
- For **better health** (vitamins require fresh vegetables).
- For **zero waste** through wastewater. recycling in space.

THE PROBLEM

IN COOPERATION WIT

Cultivation in space

- Fixed shelves/layers.
- Prohibitive high cost volume/unit.
- Resource intensive.
- Efficiency needs to be increased.

THE PROBLEM

Most of the volume is unused in traditional Vertical Farms

0

• 5

•

Adaptive Vertical Farm

Crops share the same volume according to the level of growth.

Crops at the beginning of their growth phase yield conditional volume to those that are more advanced.

- A sensor system measures the plant height.
- AVF adapts cultivation volume to the growth of crops.
- Formwork in each shelf to have distinct microclimate.
- Almost **100% of the volume** is always used.

SPACE PLANT THE FUTURE

Space V is a startup and a University of Genoa spin-off that patented and develops the new **Adaptive Vertical Farms** for space.

Space V just joined the Turin **ESA-BIC incubator**.

SPACE V PROTOTYPE

The AVF Integration of multidisciplinary subsystem

- Micro-climate subsystems for each drawer
- Lighting subsystem
- Fertirrigation subsystem
- Shelf handling subsystem
- Sensor and actuator subsystem (temperature, humidity, light, Ph, plants height measurement)
- Software and firmware subsystem with AI algorithms and IoT systems
- Power, conditioning and protection subsystem

ADAPTIVE VERTICAL FARM

- How to sow in order to **maximize yields**?
- What is the **gain** in production yield?
- What is the average **volume occupancy**?

QUESTIONS:

- Does the gain depend on the **crop type**?
- Is there an **optimal number of shelves** for a given height?
- How does the gain increase by also adapting the **root part**?
- Does it result in a reduction in **energy consumption**?

OPTIMAL SCHEDULING OF SOWINGS

Assumptions:

- System to **measure in real time** the height of crops.
- The distance between shelves varies by means of an **automated mechanism**.
- An **aeration formwork** in each shelf can provide a constant and uniform air flow.

Suppose we adapt only the leaf part, but it would also be possible to adapt the root part.

11

IN COOPERATION WIT

Time interval $[1, \mathcal{T}]$ discretized into $\Delta t, 2\Delta t, \dots, T\Delta t$, where $\Delta t = \mathcal{T}/T$ is the sampling time. For $i = 1, \dots, N, t = 1, \dots, T, N$ number of shelves:

OPTIMAL SCHEDULING OF SOWINGS

- $x_{i,t}$ binary variable equal to 1 if the shelf *i* is cultivated at time *t*, and zero otherwise;
- $s_{i,t}$ binary variable equal to 1 if a sowing occurs in the shelf *i* at time *t*, and zero otherwise;
- $h_{i,t}$ positive real variable equal to the height of the shelf *i* at time *t*

Cost function corresponds to maximizing seedings:

$$\max \sum_{i=1}^{N} \sum_{t=1}^{T-C+1} s_{i,t}.$$

with **constraints**

Mixed-integer linear programming problem (MILP): Formulation

12

IN COOPERATION WITH

OPTIMAL SCHEDULING OF SOWINGS

Space occupied **cannot exceed the total height** of the greenhouse

$$\sum_{i=1}^{N} h_{i,t} \le H_{\text{tot}}, \quad t = 1, \dots, T$$

If a shelf cultivated, **impossible to schedule another sowing** before harvest

$$\sum_{\tau=t-C+1:\tau\geq 1}^{t} s_{i,\tau} \le 1, \quad i = 1, \dots, N, t = 1, \dots, T.$$

Mixed-integer linear programming problem (MILP): Constrains

If a sowing is performed, the shelf **remains cultivated** up to time t + C - 1

$$x_{i,t} = \begin{cases} 1 & \text{if } \sum_{\tau=t-C+1:\tau\geq 1}^{t} s_{i,\tau} = 1, \\ 0 & \text{otherwise,} \end{cases}$$
$$i = 1, \dots, N, t = 1, \dots, T.$$

etc ..

IN COOPERATION WITH

RESULTS

Scenario like in MELISSA program:

wheat and lettuce.

Performances have been evaluated by two indicators: **number of sowings** and **percentage of exploitation** of the vertical height in comparison with a vertical farm with fixed shelves (VF).

European Space Agency

- Almost **100%** of the volume is always occupied.
- The **production yield** compared to a vertical farm of the same height increases **by 108%.**
- Harvests increase from 12 to 25.
- Without considering **leaf distance**, the volume occupied increases **from 39% to 69%.**

٠

Almost **100%** of the volume is always occupied.

- The **production yield** compared to a vertical farm of the same height increases **by 86%.**
- Harvests increase from 15 to 28.
- Without considering **leaf distance**, the volume occupied increases **from 46% to 72%.**

FALLOUT ON EARTH

- Application to terrestrial VF.
- Techno-economic evaluation by University of Bologna comparing AVF and VF of the same size.

In 10 years AVF shows a gain (in terms of annual profit) of 205% over VF, while in 20 years it is 103%.

www.spacev.bio

CONCLUSIONS

- AVF exploits 90%-100% of the available volume.
- **Production yield** increases in average 80%-108% with respect to a vertical farm with fixed shelves, but it can reach 172%.
- Energy consumption reduced by 43% (preliminary study of the University of Genoa).

Future works:

- Heuristic algorithm compared to Linear Programming.
- Scheduling with different species in the same AVF.
- Gain as the number of shelves and height increase.
- Adaptivity in the root part.
- Spatialization of the prototype.

THANK YOU.

Patrizia Bagnerini

University of Genoa (Italy) & Space V S.r.I. patrizia.bagnerini@unige.it

www.melissafoundation.org

Follow us on social networks

f in y 🖸 🕑