

Morpho-physiological and nutritional responses of *Brassica* microgreens to heavy ions: an outlook on ionizing radiation from the REBUS project

V. De Micco, S. De Francesco, C. Amitrano, E. Vitale, G. Costanzo, W. Tinganelli, M. Durante, C. Arena

Terrae Novae 2030+ Strategy Roadmap (©ESA)

Exploration goals of ESA

Mission scenario and Space constraints

Genetics

Structure and function

Reproduction

Ionizing Radiation: variability in space and time

Galactic Cosmic Rays

High-energy protons (80-90%)

Helium nuclei – α particles(10-15%)

High-energy nuclei – HZE ions (Ne, Ca, Fe, C…)

Radionuclides

 α , β and γ decay

Solar Particle Events

Contamination

De Micco et. al. 2022. Frontiers Plant Sci Front. Plant Sci. 13:1001158.

Plants vs mammals

Type

Variability of responses

high

Occurrence of hormesis: increased content of antioxidant compounds, improved nutritional value, stimulation of growth

ROS production, damage to

proteins and nucleic acids,

reduced growth and early

Decreased development and

altered metabolism

senescence

Specific focus of the REBUS project

/In-situ Resource Bio-Utilization for life support in Space – Effects of ionizing radiation

• Impact on the **'regeneration'** value

• Impact on **nutritional value** of edible organs

Effects of **high-LET** (Linear Energy Transfer) ionizing radiation on **morpho-anatomical traits** and **antioxidant content** of *Brassica rapa* L. subsp. *sylvestris* var. *esculenta* microgreens

Experimental phases and analyses

Procedures

Irradiation

Cultivation

Analyses

Data elab

Growth and morphology

- ✓ Germination and survival
- \checkmark Fresh and dry biomass
- ✓ Hypocotyl length
- ✓ Cotyledon and leaf area

Functional anatomical traits

- ✓ Tissue thickness
- ✓ Tissue density
- ✓ Stomata traits
- ✓ Phenolics localization

Biochemical traits

- ✓ Antioxidant capacity
- ✓ Chlorophylls, carotenoids
- ✓ Polyphenols
- ✓ Ascorbic acid
- ✓ Soluble proteins

а

0 Gy 0.3 Gy 1 Gy 10 Gy 20 Gy 25 Gy

(DIR AND REAL PROPERTY OF

Chlorophyll content

cd

cd

25Gy

Biochemical traits

DARAMINALIA

0 Gy 0.3 Gy 1 Gy 10 Gy 20 Gy 25 Gy

0 Gy 0.3 Gy 1 Gy 10 Gy 20 G

10 Gy 20 Gy 25Gy 0 Gy

0.3 Gy 1 Gy 10 Gy 20 Gy 25 Gy

M ELISS A

no aberrations in growth and development

ion- and dose-specific coordination in morpho-functional traits

Conclusion

Take-home message and further perspectives

56**c**

- To identify **threshold doses** which maximize nutritional value without biomass loss
- To assess whether the **combined action of several radiation** sources have additional or compensatory effects
- Further experiments using other sources of radiation as well as galactic cosmic ray simulators are desirable

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

il presente

www.melissafoundation.org

Follow us
f in Y D

Veronica De Micco Dept. Agricultural Sciences, University of Naples Federico II

demicco@unina.it

Part of the results presented here is based on the experiment Bio_08_DeMicco, which was performed at the SIS18 at the GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase-0

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

