

Designing the MELiSSA Pilot Plant Integration

Gas loop closure between a higher plants chamber and a crew compartment: Requirements, specifications, simulations and hardware design

Carles Ciurans

MELiSSA Pilot Plant – Claude Chipaux Laboratory, Universitat Autònoma de Barcelona

C. Arnau, E. Peiro, C.D. Dussap, L. Poughon, O. Gerbi, B. Lamaze Ch. Lasseur, F. Godia

Integration Work Package 2 (WP2)

WP2 consists on the gas loop closure of a higher plants chamber (C4b) and a crew compartment (C5)

WP2 is a crucial part of a stepwise approach towards the full gas closure of the MELiSSA loop

Systems engineering approach: Requirements Matrix

To address the WP2 design phase properly, a systems engineering approach is followed where needs and systems requirements are carefully considered.

The system requirements include a set of statements of capabilities necessary for the needs to be satisfied

WP2 Requirements Matrix

MAIN NEEDS

- The system shall collect and connect the gas phases of C4b and C5
- 2) The system shall deliver gas phases with a required flow
- **3)** The system shall produce more than 90% of oxygen consumed by a given number of crew members
- 4) The system shall be controlled by the MPP control system
- 5) The system shall be assessed with ALiSSE criteria

WP2: Basic Design & Control Strategy

Objective: The main objective is controlling O_2 in C5 at 21%. This is done by adjusting the flow from the enriched O_2 gas phase in C4b to C5. C4b gas phase is controlled by adjusting the light intensity.

WP2: Basic Design & Control Strategy

Objective: The main objective is controlling O_2 in C5 at 21%. This is done by adjusting the flow from the enriched O_2 gas phase in C4b to C5. C4b gas phase is controlled by adjusting the light intensity.

WP2: C4b Required Blocks

WP2: C4b Model Construction

C4b Required Blocks

C4b Model Construction

C4b Available Hardware

C4b Model Validation \gg C4b Control Implementation

The MELiSSA Pilot Plant Higher Plant Chamber (HPC) is designed to grow higher plants in a hydroponic system, using LED (green, red, far-red and blue) lightning and made by three central modules dedicated to grow vegetables and two airlocks in the laterals dedicated to seed and harvest the plants with a minimum volume loss

HPC Design and Operation characteristics	Value	Units
HPC Surface	5	m ²
HPC Volume	9.4	m ³
Day/Night Bulk Temperature (T_b) – Controlled	26-20	°C
Bulk Pressure (P _b) – Controlled	101300+50	Pa
Day/Night Relative Humidity (RH) – Controlled	50-70	%
Day Light Intensity (I_u) – Controlled	130-550	µmol/m²/s
External CO ₂ concentration (C _i) - Controlled	1000	µmol/mol
Hydroponics pH and EC - Controlled	5.9, 1.9	[], mS

WP2: C4b Model Validation (And Light Control Design)

WP2: Control Implementation – Experimental Design

C4b Required Blocks C4b Model Construction C4b Available Hardware C4b Model Validation C4b Control Implementation

Test Objective: Adjusting O₂ concentration at 21.5% in C4b by manipulating light intensity and 16h/8h photoperiod

- MPP Higher Plant Chamber is set to produce up to 2.1 2.2 g/h O₂ providing satisfactory biometric quality (see Plants Characterisation session 3/3 10:30 by Carolina Arnau et al., for details)
- N_2 is injected in the chamber to simulate the O_2 consumption of 3 rats (~1.7 g/h)

WP2: C4b Control Implementation - SHERRA UN CON COSA UNB MELISSA Results

C5 Dynamics

C4b Dynamics

WP2: Process Flow Preliminary Diagram

Low nominal flow (2 mL/min) and low compartment overpressure can be managed by gas buffers

1

2 Error between outbound and return flows may lead to pressure unstability, thus only one buffer tank is used for both compartments and overpressure in C5 is controlled by return flow to C4b

WP2: Detail P&ID and Next Steps

Next steps for Integration:

- 1) HAZOP
- 2) Final P&ID
- 3) Manufacturing and installation
- 4) Site Acceptance Test (SAT), Functional Test (FT)
- 5) WP2 Integration campaign

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

THEFT

www.melissafoundation.org

Follow us
f in Y D

THANK YOU.

Carles Ciurans UAB - UCA

Carles.Ciurans@uab.com

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

