

CLERMONT AUVERGNE

S

Auverane

MARIE CURIE

SPACE GREENHOUSE DESIGN: TOWARDS A SYSTEMATIC METHODOLOGY

Lucie Poulet¹, François Maréchal², Claude-Gilles Dussap¹

¹ Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F 63000 Clermont-Ferrand, France ² École Polytechnique Fédérale de Lausanne, Valais-Wallis, Sion, Switzerland

SERENITY

Space & Earth Reliable greENhouse desIgn meThodologY

- Marie Skłodowska-Curie Actions Postdoctoral Fellowship
- Partner: IPESE EPFL
- Collaboration: ESA MELiSSA, NASA KSC, Sherpa Engineering, Interstellar Labs
- Open science: data management and publications

Deliverables

Data Management Plan

- Data management life cycle for all data sets
- $\circ~$ What data with which methodology and standards
- \circ Data sharing, curation and preservation

Career Development Plan

- $\circ~$ Joint document by supervisors and researcher
- $\circ~$ Research objectives + training and career needs
- $\circ~$ Planning for publications and conferences

Communication, Dissemination & Outreach Plan

- $\circ\;$ Activities, use and the benefits for citizens
- Planned measures to maximize project impact
- Target groups

	Year 1							Year 2																
Work Package Tasks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
WP 1 - Analysis of constraints and objectives					D1.1																			
Identify mission scenario constraints			MS1.1																					
Define reliability and stability threshold					MS1.2																			
WP 2 - Creation of subsystem models							MS2.1 D2.1																	
WP 3 - Generation & Interpretation of results															D3.1									
Generation of competing designs											MS3.1													
Design ranking with ALiSSE and ESM criteria															MS3.2									
WP 4 - Decision on a systematic approach																								D4.2
Development of systematic approach																				MS4.2				
Recommendations for terrestrial GHM											MS4.1													MS4.3
WP5 - Dissemination and Communication																								
Dissemination			D5.1				D5.4		D5.5								D5.11		D5.13 D5.14	D5.15			D5.1 7	
Communication and Outreach activities			D5.2		D5.3				D5.6	D5. 7		D5.8		D5.9		D5.1 0		D5.12				D5.16		D5.18
WP6 - Project management			D6.1		MS6.1	D6.2	MS6.2				MS6.3					MS6.4					MS6.5			MS6.6

CONTRACTOR OF THE OWNER OWNER

Context & Main goal

- Return to the Moon, preparing for Mars
 - Need for larger Greenhouse Modules (GHM)
 - More reliability and sustainability
- Goal: a systematic methodology to design space and terrestrial GHM
 - Chemical & Systems engineering approach
 - Based on modeling and simulation tools
 - Systems in systems method (see OSCAR project)
 - ALiSSE criteria

Current approach

Sterner and the state of the st

Needed approach

Best design approach

- Exergy diagnostics: evaluation of the main sources of irreversibility
- Numeric test of best configurations by simulation
- Use of radiative energy for converting minerals and CO₂ into consumable products (O₂, recycled water and food)

Review of Mission Scenarios

Туре	Location	Gravity	Radiations	Sun profile	Magnetism	Resources
Moon	Shackelton	0.16 g	S	2	No	2
Mars	Multiple	0.38 g	<i>'91'</i> e	gres	No	gres
Interplanetery travel	Solar system	μg	'k in pr	k in pro	No	k in pro
Space station	LEO Cis-Lunar	μg	Mo	Wor	Yes No	Mor

Subsystem identification & modelling

Mission Scenario Location Gravity 0 Radiations O Sun profile 0 Magnetism 0 Module pressure **# People** Duration

System Boundary definition Subsystem Identification

Mission Scenario Location Gravity 0 Radiations O Sun profile 0 Magnetism 0 Module pressure **# People** Duration

Connection and interaction with outside systems

OSMOSE: multi-objective optimization analysis of integrated energy systems

Conclusion

 Coupled chemical, process and systems engineering approach with mutli-objective optimization.

- A methodology towards a systematic approach for GHM design.
- Integrated models and ALiSSE criteria.
 Terrestrial applications.

The SERENITY project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement n°101067017.

www.melissafoundation.org

Follow us
f in Y

THANK YOU.

Lucie Poulet Université Clermont Auvergne, Institut Pascal

Lucie.poulet@uca.fr

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

