

Urine running in circles – human "waste" as a resource for horticulture & agriculture

Ariane Krause

Leibniz Institute of

Vegetable and Ornamental Crops (IGZ) e.V.

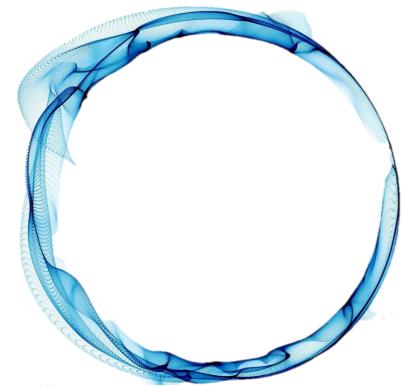
introduction

Current and future ways to closed life support systems

<u>Aim:</u> 100 % closed material cycles (water, oxygen, carbon, nutrients, ...) & 100 % solar energy

Pictures: ESA

Current and future ways to closed life support systems


<u>Aim:</u> 100 % closed material cycles (water, oxygen, carbon, nutrients, ...) & 100 % renewable energy

Pictures: ESA

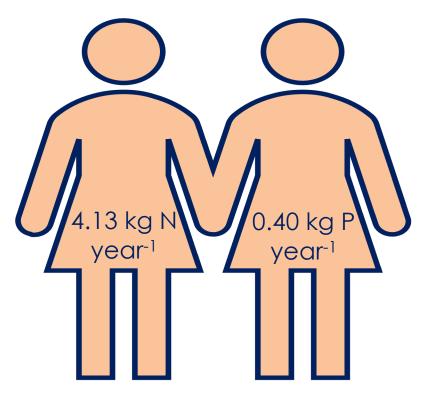
Current and future ways to closed life support systems

'Operating within the scheme of a **circular economy**, and the incorporation of **nutrient cycling**, are principle components of **future sustainable food systems**'

Springmann et al. (2018)

Picture: Susanne Rotter German Council of Environmental Advisers

MELIES A Establishing a circular, climate-resilient and community-supportive agri- & horticulture


Based on (i) nutrient cycling, (ii) humus formation & carbon sequestration, (iii) elimination of pollutants, and (iv) low emissions.

Urine is a resource!

- → Contributes up to 80 % of the Nitrogen (N) and up to 60 % of the Phosphorus (P) comprised in urban municipal wastewater
- Accounts for only 1 % of the volume

Herrmann and Klaus (1997) Simha and Ganesapillai (2017)

Data adapted from: Viskari et al. (2018)

Urine processing

We conduct research on the use of **nitrified urine-based fertilizers (NUF)** in horticulture with respects to <u>fertilizer efficiency in different</u> <u>production systems</u>, and the <u>assessment of potential trade-offs</u>, <u>such as higher GHG emissions</u>.

materials & methods

Nitrified Urine-based Fertilizers (NUF)

	C.R.O.P.	Aurin Constant eawag	
Stabilization process	Nitrification with addition of a base (CaCO ₃)	Nitrification up to natural equilibrium	
Pharmaceutical removal	Biological degradation; R&D progress	Activated carbon filtration	
Sanitization	Pasteurization	Distillation/Pasteurization	

C.R.O.P. = \underline{C} ombined \underline{R} egenerative \underline{O} rganic food \underline{P} roduction

Nutrient concentrations found in the two NUFs

End product		Urine-based fertilizer solution enriched with calcium		<u>Concentrated</u> urine-based fertilizer solution	
Min	neral nutrient	Unit	'Crop'	'Aurin'	
NO	₃ ⁻ -N	g L-1	4.69 ± 0.07 ~ 2:1	30.9 ± 4.66 ~ 1:1	NO₃ ⁻ :NH₄ ⁺
NH4	4 ⁺ -N	g L-1	2.29 ± 0.19	32.2 ± 5.88	$NO_3 \cdot NI_4$
Ρ		g L-1	0.33 ± 0.02	3.09 ± 0.03	
К		g L-1	1.85 ± 0.06	21.4 ± 1.15	
S		g L-1	0.49 ± 0.02	3.57 ± 0.26	
Ca		g L-1	3.29 ± 0.30	0.38 ± 0.01	
Na		g L-1	2.78 ± 0.09	25.9 ± 1.09	
CI		g L-1	5.49 ± 0.09	46.7 ± 0.67	

Mean ± standard error

Evaluation of NUF with regards to plant growth and GHG emissions

Pot experiment in climate chamber with maize Master thesis Oscar Rodrigo Monzon

Field experiment in three soil types with white cabbage

Hydroponics experiment with tomato

Master thesis Aladdin Halbert-Howard

experimental design & selected results

Evaluation of NUF with regards to plant growth and GHG emissions

Pot experiment in climate chamber with maize Master thesis Oscar Rodrigo Monzon

Field experiment in three soil types with white cabbage

Hydroponics experiment with tomato

Master thesis Aladdin Halbert-Howard

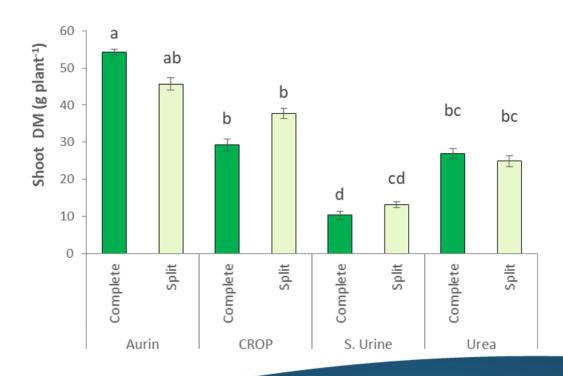
Crop: maize (Zea mays convar. saccharata L., cultivar Sugrano) (Feb-May 2019) 4 I pots, in peat-free substrate Completely randomized two-factorial block design

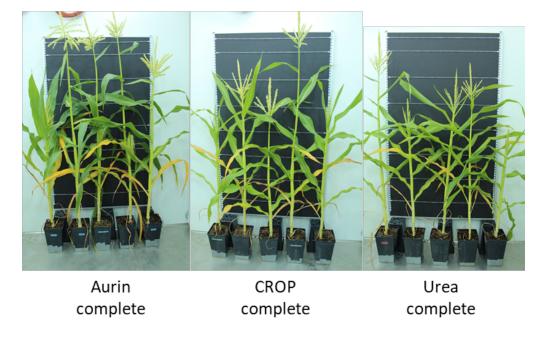
4 fertilizer treatments; n=5:

- 2 NUF (Aurin, C.R.O.P.)
- 1 human urine mimic (synthetic urine)
- 1 mineral fertilizer (urea)

2 application modes variating during time:

- Full N fertilizer application before sowing ("complete")
- Two applications of 50% of the N demand ("split") with 1. before sowing and 2. after two weeks.





Pot experiment: results Plant dry matter (DM) production

Shoot DM biomass

Maize plants 49 days after sowing

Variation of application timing: "Complete"= full fertilizer application before sowing; "Split"= 50% of total N before sowing and 50% of total N after two weeks

Pot experiment: results N-losses

	Treatments		5	N loss
рН	NH_4^+		Complete	Split
<4-5	50%	Aurin	0.50 ± 0.03 e	0.54 ± 0.02 e
<4-5	20%	CROP	0.48 ± 0.03 e	0.43 ± 0.02 e
~7	100%	S. Urine	11.7 ± 0.32 a	5.22 ± 0.27 b
		Urea	2.01 ± 0.07 c	1.21 ± 0.03 cd

Evaluation of NUF with regards to plant growth and GHG emissions

Pot experiment in climate chamber with maize Master thesis Oscar Rodrigo Monzon

Field experiment in three soil types with white cabbage

Hydroponics experiment with tomato

Master thesis Aladdin Halbert-Howard

Hydroponics experiment with tomato Master thesis Aladdin Halbert-Howard

Two 60 m² greenhouse cabins @ IGZ, March till July 2019

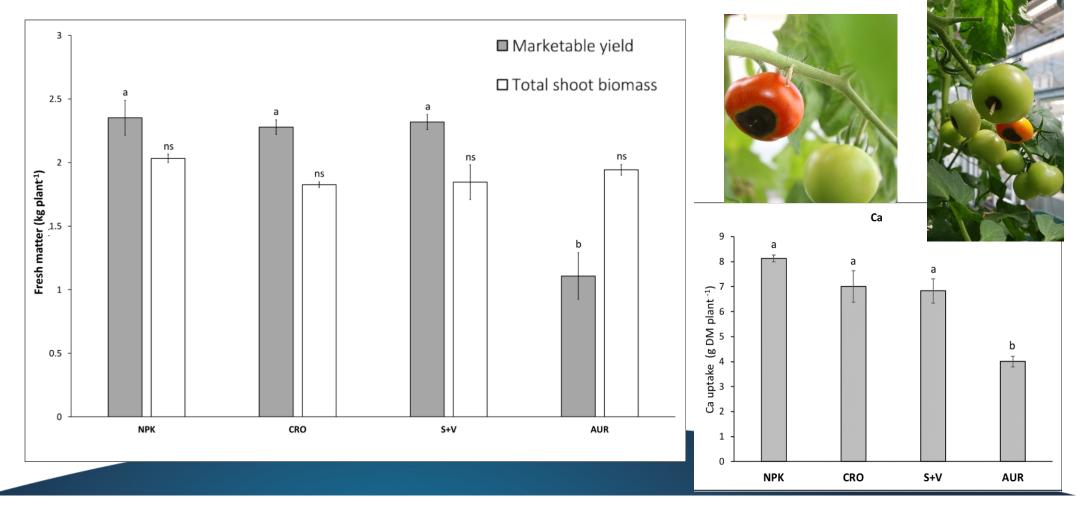
Crop: tomato (Solanum lycopersicum L. cv. Pannovy), Apr-Jul 2019 Nutrient film technique (NFT) hydroponics system

4 fertilizer treatments; n=4:

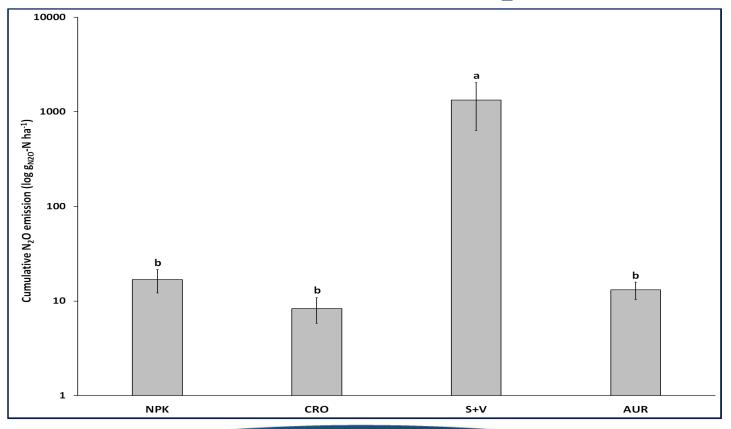
- 2 NUF (Aurin, C.R.O.P.)
- 1 Organo-mineral recycling fertilizer, Struvite + Vinasse (S+V)

N20

• 1 Mineral fertilizer ("control") 🌇



Photos: F. Häfner



Hydroponics experiment: results Plant fresh matter production

Hydroponics experiment: results Cumulative N₂O emissions

re-cap & conclusions

Pot experiment - maize

Fertilizer effect:

Aurin > C.R.O.P. ≥ urea > synthetic urine

 Nitrification of urine decreases NH₃ volatilization

Re-cap results

Hydroponics experiment - tomato

✓ Fertilizer effect:

Aurin ~ CROP ~ struvite&vinasse ~ NPK

- Fruit yield: higher NH₄⁺ content in Aurin prevented Ca-uptake and caused increased blossom-end-rot
- ✓ NUF with minimal N₂O emissions

Synthesis I

- Both NUF are adequate recycling fertilizers and viable substitutes to established synthetic mineral fertilizers (urea) and organo-mineral recycling fertilizers (struvite, vinasse).
- ✓ No difference in yield between the two NUF with differing NH_4^+/NO_3^- -ratio in substrate but in hydroponic.
- In hydroponics, NH₄⁺/NO₃⁻-ratio matters due to lack of (natural) buffering systems.
- The level of nitrification during urine processing determines the NH₄⁺/NO₃⁻-ratio and, thus, the application options for NUF products in different horticultural systems.

Synthesis II

- No negative trade-off, but potential ecological benefit identified for NUF with regards to GHG.
- Nitrification of urine increases fertilizer efficiency and decreases NH₃ volatilization.
- Future research needed for the adaption of recycling fertilizers to reach a 100% recycling rate, and the role of different hydroponic systems with regards to GHGs.

Acknoledgments

Thanks to the team of gardeners and

various colleagues at IGZ for their support.

The experiments were conducted as part of the **EU-Horizon 2020 project SiEUGreen** (Grant Agreement No 77423).

SiEUGreen Sino-European innovative green and smart cities

Co-funded by the Horizon 2020 programme of the European Union

THANK YOU.

Ariane Krause Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V. krause@igzev.de

www.**melissafoundation**.org

f in 💙 🖸 🔤

PARTNERS

UNIL | Université de Lausanne

vito